WBS 6.05.04.01 Low Voltage Power Supply Production

Haleh Hadavand UT Arlington

Director's Review Practice Talk for: NSF pre-PDR Review

March 3, 2017

L3 Manager, CAM

- Haleh Hadavand Assistant Professor of Physics UT Arlington, TX
- Member of ATLAS since 2005
- Extensive work on commissioning and monitoring of LAr with cosmics as well as calorimeter cluster monitoring
- Developed Data Quality monitoring framework
- CaloGlobal and Jet monitoring contact

UT Arlington

- Physics
 - •Faculty: *Haleh Hadavand(LVPS), Andrew Brandt (LVPS)*, Andy White (ITC), Kaushik De (PPr)
 - Guilio Usai, Research Assistant Professor
 - undergraduate students
- Engineering
 - Faculty: Ali Davoudi
 - Electrical Associate: Seyedali Moyadi
 - Electrical Technician: Michael Hubbard

Low Voltage Power Supply

Figure 5. Picture of a brick test fixture

Figure 8. Close-up view showing connectivity of a brick in the Burn-in Station

Fig. 1. TileCal Module

Fig. 2. Electronics drawer

Fig. 3. LVPS mounted on module

Deliverable 1024 Low Voltage Power Supplies

- 3-in-1 Front-end boards: Shaping of PMT signals for digitization, calibration and luminosity monitoring
- Main board: Digitize shaped PMT pulses, control attached 3-in-1 Front-end boards
- Daughter board: High speed link to the off-detector electronics for commands, On-detector monitoring / control and LHC clock extraction and distribution
- PPR: Off detector data stored in pipeline for trigger decision, interface to DAQ, and DCS

Power Connectivity

Range of Currents: ~2:1 * ⇒ Factor of 2 for redundancy

LVPS Schematic

- Buck Convertor with transformer
- Controller chip operates at 300 kHZ
- •10-30% Duty cycle
- transformer winding of 14:2
- Vout 10 V, 7 A nominal, 14 A redundancy, 11A over voltage protection

Demonstrator

Version 8.0.8 installed Daughter Board Good performance Adder Base Board **PMT Blocks** HV regulation Board (underneath) Main Board

Changes Since CDR

 The design of the burn-in station is now part of task list

Cost of Materials

	N=30	N=100	N=1024	N=1200
Stock Parts	\$4,500	\$12,000	\$89,000	\$104,000
Transformers	\$10,500	\$25,000	\$81,000	\$95,000
Thermal posts	\$2,400	\$7,000	\$62,000	\$61,000
PCB Fabrication	\$1,600	\$2,000	\$6,000	\$7,000
PCB Assembly	\$9,500	\$19,000	\$97,000	\$114,000
Totals	\$28,500	\$64,000	\$335,000	\$381,000

Table 1 Brick Procurement M&S as a function of number of bricks.

- Costs based on BOM received from vendors a few months ago
- The rates are based on quantity purchase at given time
- Use vendors already used for earlier versions of LVPS
 - Good relationship and experience

Labor Costs

- Main person overseeing the LVPS project is the Electrical Technician with oversight from Electrical engineer
- The Electrical Assistant is an EE PhD student (uncosted till Jan 2018)
 - Responsible for the design of a new burn-in-station
- During the pre-production and production we will use EE and EA to fix broken boards and graduate and undergraduate students for QA tasks (checkout and burn-in)

Labor Costs by Project Phase

Cost Table by Project Phase

Overview of Tasks

```
Project phases:
    Design Phase (R&D) & Pre-Production
    Production (MREFC)

We are to deliver all 1024 LVPS needed

Production consists of:
    assembly of LVPS
    quality testing and documentation
    repair of defective boards
    shipping of bricks to NIU to put into boxes

There will be Pre-production run of 100 LVPS
    establishes the production process, qualifies vendors
    ~100 boards produced will be used as shelf-spares
```

Design Phase

- The LVPS will go through minimal design changes in 2017
- A new burn-in-station will be designed by EA
- Another version after ELMB++ interface fixed and radiation testing
- During the design phase will also purchase and validate test stands
- Radiation testing to occur in mid-late 2019
 - According to results might need to design change

Pre-Production

- Pre-production of 100 boards to happen in April-December 2020
- This run is used to prepare of production helping to determine defect rate, establish connection with vendors, and train students in the process

Production

- Production of 1024 boars to happen in Jan-2021-February 2022
- This steps in production include procurement of parts which are then inspected in house before they are send to PCB assembly vendor
- Each brick is gone through QA and burn-in
 - This work will be done mainly by EA and undergraduate students
 - EE and EA will repair broken bricks and use 5% as spares
- After QA bricks are shipped to NIU where they are put into boxes of

Risk